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ABSTRACT

Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the
core of many design methods developed over the decades. Despite its prominence, most of the work on robust control
design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have
acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper
presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic
parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The
physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This
unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear
system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty
to be considered is a direct current motor parameter. The control design objective is to design a controller that
satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric
uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the
experimental results.

1 Introduction
This paper presents an application of a control design and analysis methodology for arbitrary dynamic systems in the
presence of parametric uncertainty. The specific classes of uncertainty considered here include multidimensional sets
and probability density functions (PDFs). In the context of this paper, multidimensional sets are simply regions in
parameter space where the stability and performance of the dynamic system are to be assessed. A bounding set in two
dimensions, for example, could be a rectangle that is defined by its center and semi-diagonal. Other bounding sets
are permitted, e.g., circular, and elliptical, with no restrictions on the dimensionality of the uncertain parameter space.
Bounding set models are typically used when little is known about the true variability of the uncertain parameters,
or when the stability and performance of the system need to be certified over a specific range of uncertainties. The
other form of uncertainty used in this work is the PDF that describes the relative likelihood for a random variable to
occur at a given point. Uncertainty models based upon PDFs require more information to create, but yield likelihood
information of stability and performance of the controlled system. Despite the fundamental differences in these two
forms of uncertainty, a unified framework [1] has been developed to accommodate both simultaneously.

The primary objective of this paper is to apply the methods outlined in [1] to a hardware realization of the classic



Fig. 1 Inverted pendulum with movable mass

inverted pendulum on a cart. This objective was broken into two tasks, one for pure analysis of both stability and
performance, and one that focused on controller design for the nonlinear pendulum system. The analysis task was
to assess the robustness of the system to parametric uncertainty in two parameters, whereas the design task was to
synthesize an optimally robust fixed-architecture controller for the nonlinear system.

2 Inverted Pendulum System
Figure 1 illustrates the experimental apparatus used in this work. The system features a cart driven by a rack and
pinion mechanism using a DC motor. The cart position is measured using an optical encoder coupled to the rack via
an additional pinion. A pendulum mounted on the cart is free to rotate and its angle is measured via an optical encoder.
The pendulum arrangement has been modified to accommodate the needs of this research. The primary modification
is the addition of a rigid coupling connected to the pivot point to allow an additional link to be added. The modified
system consists of two collinear links, the original upper link with length 2L1, and a new lower link with length 2L2.
The lower link has been designed to permit the addition of a movable point mass, Mp, whose distance from the pivot
point, Lp, is considered as one of the uncertain parameters. A total of two uncertain parameters were considered in
this study and were distinct in that one was physically realizable by changing the location of a movable mass on the
pendulum, and one was a simulation model parameter corresponding to the relationship of current input to torque
output of the DC motor used to actuate the system. Both uncertain parameters have a profound effect on the stability,
performance, and controllability of the dynamic system. For example, the movable mass degrades controllability of
the system by requiring larger control signals to maintain stability and achieve adequate performance as the mass
moves away from the pivot point.

2.1 Model of the Dynamic System
The classic inverted pendulum is well-studied and the equations of motion can be found in many references, e.g.,
[2]. However, the configuration used in this work departs slightly from the conventional inverted pendulum, so the
equations of motion are stated here for completeness.



The input force to the system is generated by applying a voltage to a DC motor to move the cart. The relationship
between voltage, V , and applied force, F , can be represented as:

V = ImRm +KmKgωg = ImRm +KmKg
Ẋc

r
T = KmKgIm

F =
KmKgV

Rmr
−

K2
mK2

g Ẋc

Rmr2 (1)

where Km is the DC motor torque constant, Kg is the planetary gearbox gear ratio, ωg is the angular velocity of the
pinion gear, Rm is the motor armature resistance, Im is the motor armature current, r is the motor pinion diameter, and
V is the applied voltage. Using the relationships given in (1) together with the fundamental physics results in the
following nonlinear equations of motion:

Ẍc =
V NW − ẊcNW 2 + cos(Θ)gsin(Θ)Rm P2 + Θ̇2 sin(Θ)Rm NP

Rm (NM− cos2(Θ)P2)
(2)
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where
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4
3

(M2 L2
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2)+Mp Lp
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M = Mc +Mp +M1 +M2 (7)

Xc is the position of the cart and Θ is the angle of the pendulum. The angle Θ is measured counter-clockwise with
zero defined when link one is pointing vertically up. Note that with this definition of Θ, the angular displacement
shown in figure 1 is actually negative. The remaining parameters above are defined as follows: Mc is the mass of the
cart, M1 is the mass of link one, M2 is the mass of link two, L1 is the half-length of link one, L2 is the half-length of
link two, and g is the gravitational acceleration. The MKS system of units are used throughout the paper.
Furthermore, it should be noted that equations given in (2) and (3) neglect damping.

2.2 Linear System Model
A general representation of the nonlinear equations given in (2) and (3) can be given as

Ẋ = F (X ,U, p) (8)

where F is a nonlinear function of the state vector X , the control input U , and the vector of uncertain parameters p.
In this system, the vector of uncertain parameters is p = [Lp,Km].

For control design purposes, this nonlinear plant is linearized about the equilibrium point (x̄, ū) satisfying F (x̄, ū, p)=
0. Deviations from the equilibrium values x̄(p) and ū(p) are written as lowercase letters hereafter, e.g., X = x̄+ x and
U = ū+u. Linearization of (8) about this equilibrium point leads to the system

ẋ = A(p)x+B(p)u+η(x,u, p) (9)



where

A(p) =
∂F

∂X
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∂U
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(10)

and η(x,u, p) contains higher-order terms. Note that A, B and the high-order terms depend on p. In a sufficiently small
neighborhood of the equilibrium point the effect of the higher-order terms is negligible. The Linear Time Invariant
(LTI) representation of the plant results from dropping the higher-order terms in Equation (9). This LTI system can be
written as

ẋ = A(p)x+B(p)u
y = Cx (11)

where A(p) is the system matrix, B(p) is the input matrix, C is the output matrix, x is the state vector, and u is the
input. This is applied to the inverted pendulum by choosing the state vector to be x = [xc,θ , ẋc, θ̇ ]> and the control
input to be the applied voltage; i.e., u = V . The equilibrium point about which we linearize is x̄(p) = [0,0,0,0]> and
ū(p) = 0. With these choices, the LTI representation matrices are:

A(p) =



0 0 1 0

0 0 0 1

0 gP2

NM−P2 − NW 2

Rm (NM−P2) 0

0 − gPM
NM−P2

PW 2

Rm (NM−P2) 0


(12)

B(p) =



0

0
NW

Rm (NM−P2)

− PW
Rm (NM−P2)

 (13)

and

C =

[
1 0 0 0

0 1 0 0

]
(14)

3 Control Architecture
There have been numerous control architectures developed and successfully implemented on similar inverted pendu-
lum systems. The objective of this work is not to introduce a new control architecture, but instead use one that is
familiar to many with control design experience and then demonstrate methods to optimally robustify this fixed archi-
tecture controller to parametric uncertainties. The mathematical framework for robustness analysis and control tuning,
covered in Section 4, is capable of handling a wide array of control architectures and plant models, linear or nonlinear,
with arbitrary parameter dependence. The primary objective of the control system is for the cart to track a periodic
reference signal while maintaining stability and adequate performance. One period of the commanded reference signal
is given in figure 2. See Section 4.3 for a detailed description of performance requirements.



Fig. 2 Cart position reference signal

3.1 Linear Quadratic Regulator Control with State Estimation
A Linear Quadratic Regulator (LQR) control together with state estimation constitute the control architecture. The
estimator was necessary since only the two positional states (cart position and pendulum angle) of the four states were
measured outputs. Conventional steady-state implementations of LQR control works by multiplying the states by a
constant gain matrix, K, to produce the plant control signal. The gain matrix is generated by minimizing the following
cost function:

J =
∫

∞

0
[x>Qx+u>Ru] dt (15)

In this cost function, weighting matrices Q≥ 0 and R > 0 are used to penalize deviation of the states from zero and
penalize control energy. Choosing these weighting matrices is the fundamental task of the control designer. In the
results to follow, these weighting matrices were chosen using a numerical optimization strategy.

Two additional features were added to the control architecture to achieve better tracking and steady state error
performance. The first was the addition of a feed-forward control term using the known reference command, and the
second was an integral error feedback term on cart position error. The feed-forward command was added to regulate
the system about the reference command instead of regulating it about x(t) = 0. This resulted in the following control
signal:

u(t) =−K(x− xre f ) =−Kx+Kxre f (16)

where xre f is the 4-element state reference vector. The second feature is an integral error feedback, which is added by
augmenting the nominal state vector with an additional element. This additional element is an error between the
cart’s actual position and its commanded position. The total control signal is:

u(t) =−K(x− xre f )−Kie (17)

where e is defined as:
e =

∫ t

0
(xcref (τ)− xc(τ)) dτ (18)

with xcref defined as: xcref = [1,0,0,0]xre f . Note that integral action is only added to the cart error signal and not to
the full measurement vector. The scalar gain term, Ki, is the last element in the gain vector obtained by solving an
LQR problem on an augmented system that includes the error state.



Fig. 3 Simulink Model of the Control Architecture

The remaining element of the control system is the state estimator which is a standard implementation of the
Kalman filter. As is standard, the state estimate, x̂, is used to replace x in (17) for implementation on the inverted
pendulum hardware. In the design and analysis that follows, the state estimator parameters are fixed. This is consistent
with current practices, since the true values of the parameters are not known prior to implementation. The Kalman
filter gains in this work were computed according to the system performance when the uncertainties assume their
nominal values.

A Simulink R© implementation of the control architecture is shown in figure 3. A linear representation of this system
is as follows:

 ˙̂x
ẋ
ė

 =


A−LC−BK LC −BKi

−BK A −BKi

0 −C1 0


x̂

x
e

+

BK
BK
C1

xre f (19)

where L is the Kalman gain matrix, and C1 = [1,0,0,0].

4 Mathematical Framework for Robustness Analysis and Control Tuning

4.1 Robustness Analysis
A brief introduction to the methodology proposed in [1] is presented next. Consider the closed-loop dynamic system

Ẋ = F (X ,U, p,r) (20)

where r is a generic representation of a reference signal, with xre f in Equation 19 as a specific realization of the
reference signal.

The control input can be represented as
U = U(X ,r,K) (21)

where the function U refers to a particular control structure and K ∈Rdim(K) is the set of free parameters, to be chosen
by the control engineer (e.g., control gains), that fully prescribe the controller. The controller is deemed acceptable
if the closed-loop response satisfies a set of requirements. These requirements, which are represented by a set of
inequality constraints on selected output metrics, depend on the uncertain parameter vector p. The control system is
deemed acceptable for a given realization, p, of the uncertain parameters if all inequalities are satisfied. Specifically,
the satisfaction of the vector inequality

g(p,r,K) < 0 (22)



implies the satisfaction of all the requirements1, and where g ∈ Rdim(g). These constraints partition the uncertain
parameter space into two sets, the failure domain F = {p : gi(p) ≥ 0, for some i}, where at least one requirement
is violated, and the safe domain S = {p : g(p) < 0}, where all requirements are satisfied. The term “satisfactory
performance”, which is to be captured in g, is broad in scope and refers to acceptable ranges of variation in metrics of
interest. These metrics may correspond to specific performance specifications as well as to basic notions of goodness.
For instance, if y(p, t) is the system output to a step-input and tas is the admissible settling time, the corresponding
requirement function is gsettling = ts− tas where ts is the minimal time for which |y(p, t)−y(p,∞)| ≤ 0.99 for all t > ts.

The parameter realization p̄ ∈ Rdim(p), called the nominal operating conditions point, denotes our best estimate of
the actual value of p. The objective of this robustness analysis is to determine the largest deviation of p from p̄ for
which all the requirements are met. In this paper, such a deviation is prescribed as a hyper-rectangular set of fixed
proportions. Note that the hyper-rectangle centered at p̄ with semi-diagonal vector m > 0 is given by

R(p̄,m) = {p : p̄−m≤ p≤ p̄+m} (23)

The notions required to calculate this deviation are introduced next.
A homothetic deformation results from a uniform, radial expansion or contraction of the space about a fixed point.

The distance from any point in the space to the fixed point changes by a factor α after the deformation. This factor
is called the similitude ratio of the homothetic deformation. Note that if α is greater than 1, the deformation is
an expansion, while if α is less than 1, the deformation is a contraction. A reference set, denoted as Ω ⊂ Rdim(p), is
deformed with respect to its geometric center p̄. Intuitively, one can imagine that Ω is being deformed with respect to p̄
until its boundary just touches the failure domain boundary ∂F . This deformation is called the maximal deformation.
The set resulting from this deformation, denoted as M ⊆ Rdim(p), is the maximal set. A critical parameter value
(CPV), denoted as p̃ ∈ Rdim(p), is (one of) the point(s) where the maximal set touches ∂F . This point is a worst-case
uncertainty combination associated with Ω. The critical similitude ratio (CSR), denoted by α̃ ∈ R, is the similitude
ratio of that deformation and is a non-dimensional metric proportional to the separation between the point p̄ and the
failure domain. The parametric safety margin (PSM), denoted as ρ ∈R is its dimensional equivalent. The values taken
on by the CSR and the magnitude of the PSM are proportional to the size of the maximal set and measure the separation
between p̄ and ∂F . The PSM is assigned a negative value if the controller does not even satisfy the requirements at p̄.
If the PSM is zero, the controller exhibits no robustness because there is an arbitrarily small deviation from p̄ leading
to a requirement violation. If the PSM is positive, the requirements are satisfied at p̄ and in its vicinity. The larger the
PSM, the larger the Ω-shaped vicinity.

Figure 4 illustrates some of these variables when two requirements are present. The CPV, p̃, the nominal parameter
point, p̄, the reference set (region within dashed line) and the maximal set corresponding to deformations in the safe
(blue) and failure (red) domains are shown. Note that by construction, the maximal set is fully contained in the safe or
failure domains.

The formulation enabling sizing the maximal deformation is as follows. If Ω = R(p̄,m), the CPV, CSR, PSM and
maximal sets corresponding to the ith requirement are

p̃i = argmin
p

{‖p− p̄‖∞
m : σigi(p,r,K)≥ 0, pmin ≤ p≤ pmax} (24)

α̃i =
‖ p̃i− p̄‖∞

m

‖m‖
(25)

ρi = σiα̃i‖m‖ (26)

Mi = R(p̄, α̃im) (27)

where ‖x‖∞
m = maxi{|xi|/mi}, pmin and pmax bound the region of interest, and σi = 1 if gi(p̄) < 0, otherwise σi =−1.

Note that σi can reverse the inequality sign of the constraint. This is needed since deformations centered at a nominal
point in the safe domain require a different formulation than those where the nominal point is in the failure domain
(See figure 4). While in the former case all points within the maximal set must satisfy all constraints, in the latter case

1For the reminder of the paper is assumed that vector inequalities hold component-wise, vector and set super-indices denote a particular realiza-
tion, and vector sub-indices denote a particular component, e.g., p j

i is the ith component of p j ∈ Rdim(p).



Fig. 4 Maximal deformations in the safe and failure domains

all points must violate at least one constraint. The value of the controller’s parameters K and the commands in r are
set a priori and kept fixed during the analysis. While K can be prescribed according to any control design practice, r
is prescribed to achieve the ultimate goal of the system.

The CPV, CSR, PSM and maximal sets associated with all requirements are given by Equations (24-27) after
replacing gi with maxi(gi). The resulting values are qualified as aggregate since they take all requirements into
account. If p̄ ∈ F , these aggregate values coincide with those corresponding to the individual requirement attaining
the smallest PSM, e.g., α̃ = α̃ j where j = argmin(ρi). Therefore, for a maximal safe set, the aggregate PSM is the
worst-case individual PSM.

The calculation of the maximal deformation requires solving an standard optimization problem. In this work, a
gradient-based nonlinear constrained optimization was used. This problem class is, in general, non-convex when the
dependency of the vector gi of requirement functions on the uncertainty p is nonlinear. In any non-convex optimization
problem there is always the possibility of convergence to a non-global optimum. When this occurs, the CPV result-
ing from the numerical optimization is mistaken and the corresponding maximal set intrudes into the failure region.
This intrusion yields to a spuriously larger PSM. Absolute guarantees are not possible, but a variety of algorithmic
safeguards can be used to deal with this deficiency. For instance, g can be evaluated at a few sample points in the
maximal set and if one happens to fall into the failure domain, it can be used as an initial condition in a subsequent
optimization. Requirements functions with a polynomial parameter dependency can be handled using the methods in
[3]. These methods, which are based on linear matrix inequalities and Bernstein expansions, do not suffer from this
potential drawback and guarantee convergence to actual maximal deformation. Notice however, that in most practical
applications the explicit functional form of g is unknown. This intrinsic feature of the problem precludes the usage of
convexity conditions from the outset.

4.2 Control Tuning
Ultimately, a good controller should satisfy the stability and performance requirements imposed upon the closed-loop
system with sufficiently large robustness margins. The PSM and CSR introduced above are examples of such margins.
A computational framework, also used in [4], enables searching for the set of controller gains that maximize these
margins. This framework is introduced next.

Equation (22) indicates that the geometry of the failure domain, thus the CSR and the PSM, is a function of the
control parameter K. Recall that this parameter is kept fixed when a robustness analysis is performed. A control
design challenge is to find the value of K for which the closed-loop system exhibits satisfactory robustness charac-
teristics. Specifically, an optimal design will be one that has the largest overall PSM for the given control structure.
This entails maximizing the separation between the nominal operating condition point p̄ and the failure domain F ,



so the largest maximal set is attained. Since the resulting controllers tolerate the largest deviations from nominal op-
erating conditions before violating any requirement, they are called optimally robust. In the presence of conflicting
design objectives, an optimally robust controller trades off the PSMs of all individual requirements to attain the largest
aggregate PSM.

Two optimization-based formulations for pursuing the optimally robust design point K̃ are presented next. The first
one evaluates robustness via the exact CSR. The second one uses an approximation to the CSR rooted in a multi-point
approximation to the maximal set. The approximate nature of this formulation may not lead to controllers with the
intended features. However, its relaxed computational demands may justify the potential drawbacks associated with
it.

4.2.1 Enlarging the Maximal Set

A formulation based on the exact overall CSR is given by

K̃ = argmax
K

{α̃(K) : h(p̄,K) > 0} (28)

where the vector constraint h(K, p̄) > 0 is used to enforce additional characteristics to the controller based on standard
control metrics. For instance, h = PM(K, p̄)−60o > 0 ensures that the feedback loop corresponding to the plant under
nominal operating conditions has a phase margin of more than 60 degrees. Examples of other performance/stability
metrics are time delay, settling time, disturbance rejection, noise attenuation, reference tracking, and control energy.
These metrics can be extracted from the time and/or frequency domains and may correspond to linear and nonlinear
representations of the plant dynamics.

Recall that calculating the CSR α̃ entails solving an optimization problem. Therefore, this formulation has an
optimization in the outer loop and another one in the inner loop. While the outer loop searches for the robustly
optimal gains K̃, the inner one searches for the CSR corresponding to the design point under consideration. Nested
optimizations, such as Equation (28) and those resulting from worst-case-based design policies, impose stringent
computational demands. Such demands can be substantially mitigated by using multi-point approximations.

4.2.2 Enlarging an Approximation to the Maximal Set

The variables K̂ and α̂ , which are estimates of K̃ and α̃(K̃) respectively, are given by

〈K̂, α̂〉= argmax
K,α

{
α : max

i≤dim(g), j≤n

{
gi

(
p̄+α(p j− p̄),r,K

)}
< 0, α ≥ 0, h(p̄,K) > 0

}
, (29)

where {p1, p2, . . . , pn} are parameter-points on the surface of R(p̄,m). These points should be uniformly distributed
over the surface. Note that this formulation replaces the inner optimization loop in Equation (28) with a multi-point
constraint over parameter points lying on the surface of a maximal set estimate. Equation (29) may lead to suboptimal
designs, for which α̂ > α̃(K̃) and M(K̂) ⊂ M(K̃), because the satisfaction of the multi-point constraint does not
guarantee the containment of the maximal set estimate by the safe domain. The formulation of Section 4.1 can be used
to determine if this anomaly has occurred.

Since the robustness analysis and tuning procedures above identify the critical combination of uncertainties and/or
failures (i.e., the CPV) the particular control architecture is more sensitive to, we expect the resulting controllers to be
safer than those validated by brute force Monte Carlo simulations.

4.3 Application to the Inverted Pendulum
The components of the uncertain parameter p are the distance, Lp, of the mass mp to the pivot point, and the mo-
tor torque constant Km. These parameters are free to assume any non-negative value, i.e., pmin = [0,0]>, pmax =
[0.330 m,∞]>. The nominal operating condition point is p̄ = [0.165 m, 0.00767 N-m/Amp]>. The robustness of the
controller to uncertainty in the value of these two parameters is evaluated and improved using the methods above. The
reference command is given by r = [xref, ẋref,0,0]>, where xref is the periodic signal shown in Figure 2. The design



parameters K are diagonal elements of the Q and R matrices of the LQR formulation of Section 3. Denote by Kbase
the gains of a baseline controller attaining satisfactory performance at p = p̄, and t f the final simulation time. The
closed-loop requirements defining the constraint function g are as follows:

1) Command tracking: the requirement g1 < 0, where

g1 =
∫ t f

0

(
xcref (t)− xc(p,r,K, t)

)2
dt− γ1

∫ t f

0

(
xcref (t)− xc(p̄,r,Kbase, t)

)2
dt (30)

and γ1 > 1 ensures satisfactory tracking of the reference command.

2) Actuation: the requirement g2 < 0, where

g2 =
∫ t f

0
u2(p,r,K, t)− γ2u2(p̄,r,Kbase, t)dt (31)

and γ2 > 1 avoids over actuation.

3) Peak overshoot: the requirement g3 < 0, where

g3 = max
t

{
xc(p,r,K, t) : t0 ≤ t ≤ t f

}
− γ3 max

t

{
xc(p̄,r,Kbase, t) : t0 ≤ t ≤ t f

}
(32)

and γ3 > 1 bounds the peak overshoot of the response.

4) Settling time: the requirement g4 < 0, where

g4 = ts(p,r,K)− γ4ts(p̄,r,Kbase) (33)
ts(p,r,K) = min

t
{|xc(p,r,K, t)−0.1|< ε for all t satisfying ts < t < 5s} (34)

and γ4 > 1 imposes an upper bound to the settling time.

5) Local Stability: the requirement g5 < 0, where

g5 = max{Real{Eigenvalues{A(p,K)}}} (35)

and A is the closed-loop system matrix of the LTI system, ensures that the up-right position of the pendulum is
locally stable.

The constraint functions corresponding to the first two requirements are evaluated using the L2 norm, and therefore,
they are a function of the transient response. Notice that the dependency of g on p assumes an unknown and implicit
functional form. Also notice that evaluating g for a particular realization of p requires simulating the closed-loop
response and calculating the five constraint functions comprising g. Further notice that while the notions of goodness
supporting the requirement functions are fairly universal, their particular functional form is not.

5 Results

5.1 Baseline Controller
This controller, to be denoted as Kbase, was designed using the structure presented in Equation 17 based on the closed-
loop performance at p = p̄. The parameters determining K are the LQR matrices Q = diag{[40,0,0,0,50]>} and
R = 10−3. This controller performed well in both the simulation and experimental settings. Figure 5 shows the
number of requirement violations in the parameter space and the maximal set when the time responses, thus the
constraint function g, are evaluated using a linear simulation. Note that the safe domain, where all requirements are
satisfied, corresponds to the green region. The color scale indicates the number of constraints violated, with black
corresponding to all five constraints violated. The colored lines correspond to constraint boundaries for each of the



Fig. 5 Number of requirement violations in the parameter space and maximal set for Kbase using linear simulation

five constraints. The corresponding PSM is ρ = 6.4× 10−3. This figure, as some that follow, was generated by
simulating the closed-loop response at the points of an uniformly spaced grid, calculating the constraint function g at
each point, and counting the number of non-negative components of each g. This large number of simulations (over
8000), which are not required to calculate the maximal deformation, has only been made for illustrative purposes.

Figure 6 shows the number of requirement violations and the maximal set for Kbase when evaluated using the
nonlinear simulation. The corresponding PSM is ρ = 1.6× 10−2. This larger PSM obtained from the nonlinear
evaluation model is consistent with the design practice used for determining Kbase. The process was an iterative
technique of modifying Q and R in the laboratory and evaluating the closed-loop performance on hardware.

By definition, the CPV is a point on the surface of the maximal set that touches the boundary of the failure
domain. Some of the figures may misleadingly show that the CPV is at the interior of the safe domain. This is a mere
consequence of the manner in which the figures are generated: they show a piecewise constant function over a uniform
partition of the parameter space. The same value/color is assigned to all parameter realizations constituting an element
of the partition. That value corresponds to the center of the box. The actual function, which is used when calculating
the maximal deformation, may vary across any given uncertain parameter range.

5.2 Tuned Controller 1: Designed based on Linear Simulation
The application of the control tuning procedure above using time responses of the linearized model yields controller
Ktuned-1. The design parameters used throughout this study are the Q and R parameters of the LQR controller. The
controller parameters for this linearized system model are Q = diag{[7.67,0.28,7.62,1.4× 10−3,79.94]>} and R =
3.2×10−3. Figure 7 shows the corresponding uncertain parameter space. The corresponding PSM, which is equal to
ρ = 3.965×10−2, is more than 6 times larger than that of the baseline. This illustrates the effectiveness of the control
tuning procedure. Figure 8 shows the linear and nonlinear time responses of Ktuned-1 for p = [0.2,4× 10−3]>. Note
that the more oscillatory nature of the nonlinear response makes the controller unacceptable.

A robustness analysis of Ktuned-1 based on the nonlinear response leads to ρ = 6× 10−3. This PSM is 6.5 times
smaller than that of the linear response. Figure 9 shows the corresponding uncertain parameter space. Major differ-
ences between the linear analysis of figure 7 and the nonlinear analysis of figure 9 are apparent. The requirements



Fig. 6 Number of requirement violations in the parameter space and maximal set for Kbase using nonlinear simulation

Fig. 7 Number of requirement violations in the parameter space for Ktuned-1 according to the linear simulation



Fig. 8 Time responses for controller Ktuned-1 at p = [0.2,4×10−3]

based on the L2 norms, whose satisfaction depend upon the transient response, are the most affected.

5.3 Tuned Controller 2: Designed based on Nonlinear Simulation
The application of the control tuning procedure above using time responses of the nonlinear model equations, as given
in (2) and (3), yields controller Ktuned-2. This controller parameters are Q = diag{[8.20,10.63,0.19,10−4,42.46]>}
and R = 1.04×10−4. Figure 10 shows the corresponding uncertain parameter space. The corresponding PSM is equal
to ρ = 2.34×10−2. As expected, this controller is more robust than Ktuned-1 according to the nonlinear response. Note
the transition between the safe domain (green area) and the region where the system is unstable (black area) may occur
without a progressive and noticeable degradation in the transient response, i.e., the violation of g5 < 0 resulting from
a small drift in p may not be preceded by any other requirement violation.

The robustness analysis of Ktuned-2 according to the linear response leads to ρ = 3.7×10−3. Figure 11 shows the
corresponding number of requirement violations in uncertain parameter space. As before, significant differences be-
tween the linear and nonlinear analyses are present. These differences, which are the result of model-form uncertainty,
highlight the need for assessing the dependence of the high order terms in Equation (9) on the uncertain parameters.

Experimental results for tuned controller 2 are shown in figures 12 and 13. Figure 12 shows two cycles of the cart
tracking response for the uncertain parameter point p = [0.165,7.67×10−3]. This point is well within the maximal set
(see figure 10) and therefore we should expect a reasonable system response. Qualitatively the system response is good,
however, due to additional unmodeled effects, such as: cart and pendulum damping, drive pinion eccentricity, drive
rack flexibility, data and power cable frictional effects, etc., the true system response slightly differs from the simulated
response. Figure 13 shows the cart tracking response for the uncertain parameter point p = [0.20,7.67×10−3]. This
point is outside of the maximal set (where all five requirements fail) and therefore we should expect an unacceptable
system response. Indeed this is the case as the system tracking response is unacceptably poor. It should be noted that if
the system was perfectly linear then the response would be unstable yielding unbounded output. Instead a limit cycle
oscillation is observed, which is consistent with the nonlinear system.



Fig. 9 Number of requirement violations in the parameter space and maximal set for Ktuned-1 according to the nonlinear
simulation

Fig. 10 Number of requirement violations in the parameter space and maximal set for Ktuned-2 according to the nonlin-
ear simulation



Fig. 11 Number of requirement violations in the parameter space and maximal set for Ktuned-2 according to the linear
simulation

Fig. 12 Experimental time responses for controller Ktuned-2 at p = [0.165,7.67×10−3]



Fig. 13 Experimental time responses for controller Ktuned-2 at p = [0.20,7.67×10−3]

5.4 Probabilistic Analysis
This section assesses the probabilistic performance of all of the control designs previously presented. The unified
framework in [1] provides explicit methods on how to use maximal sets to compute bounds to failure probabilities.
To proceed with failure probability computations, one must first prescribe a PDF for the uncertain parameters. In-
dependent generalized beta distributions were chosen to represent the uncertainty in both Lp and Km. Generalized
beta distributions are parameterized by four values, [a,b,xmin,xmax], two shaping parameters, a lower limit, and
an upper limit, respectively. The specific parameters used in this paper were for Lp: [5,5,0.12,0.21], and for Km:
[5,5,0.003,0.012]. Plots of the probability density functions are given in figure 14. The probabilistic assessments
performed in this work were based upon probability bounds computed using maximal sets, and estimates of failure
probability using sampling. A robustness comparison of the three controllers is given in table 1. There are several
things to note from these results. In terms of robustness, the baseline controller, Kbase, shows good robustness when
evaluated on the nonlinear system, but very poor robustness when evaluated on the linear system. As stated earlier,
this is consistent with the design practice used to generate Kbase. The controller Ktuned−1 had good robustness when
evaluated using the linear design model, but suffered greatly when deployed on the nonlinear model. The best choice
of controller is Ktuned−2 because it has good robustness margins, as indicated by the 46.3 percent improvement in the
PSM over Kbase. These results reinforce two important principles. The first is that parametric uncertainty must be ex-
plicitly considered to achieve good robustness, and the second is that model nonlinearities can have a dramatic impact
on system robustness. These results clearly demonstrate that controllers designed using linear models may have very
poor robustness when evaluated on nonlinear models.

Most of the prior state-of-the-art techniques (e.g., µ-synthesis, H∞, linear parameter varying, etc.) for the analysis
and control design in the presence of parametric uncertainty require linear plants and a particular structure of parameter
dependencies (affine dependencies, or limited polynomial dependencies). Furthermore, explicitly incorporating time
domain specifications into conventional robust control design techniques can be very cumbersome. In contrast, the
strategies proposed in this work do not require linear system dynamics or a specific functional form of the uncertainty
and can easily accommodate a variety of time or frequency domain requirements. However, one of the greatest
advantages is the ease at which the methods used here interface with arbitrary simulation models and the ability to
incorporate probabilistic definitions of parametric uncertainty models and therefore represents an advancement in the
state of practice for control analysis and design.



Fig. 14 Probability density functions

Controller Test Model PSM Failure Probability Failure Probability
Upper Bound Using Sampling

Kbase Linear 6.4×10−3 0.8847 0.3146
Kbase Nonlinear 1.6×10−2 0.4538 0.1236
Ktuned−1 Linear 3.9×10−2 5.22×10−4 1.5455×10−7

Ktuned−1 Nonlinear 6.0×10−3 0.8989 0.5035
Ktuned−2 Linear 3.7×10−3 0.9604 0.3990
Ktuned−2 Nonlinear 2.34×10−2 0.1653 0.0441

Table 1 Robustness Assessment Results

6 Conclusions
This paper presents a control design and analysis methodology for arbitrary dynamic systems in the presence of
parametric uncertainty. A brief overview of techniques to compute maximal multidimensional bounding sets and
associated probability of failure bounds for parametric uncertainties was given. The classic inverted pendulum was
used to demonstrate these techniques for control system design and analysis on a realistic nonlinear system. Generic
requirements in the form of command tracking, control actuation, peak overshoot, settling time, and local stability
were used to demonstrate the versatility of the method. One of the key results from this work was that the methods
are equally applicable to either linear or nonlinear system models, and therefore represent an advancement in the state
of practice for control system design and analysis. This technique allows one to use the nonlinear model explicitly in
the design process, something many conventional robust control analysis and design methods simply cannot accom-
modate. Using the nonlinear model in the design process was shown to result in a controller with better robustness
properties when applied to the nonlinear system than a controller based on the linear model.
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